Algebra - Theory of equation
1-р курсд байхдаа тэмдэглэж авч байсан бичилтүүдийг хувын дэвтэрнээсээ оруулж байгаа болно.
Theory of
equation
If a0, a1,
a2…………..an-1 an are integers then an expression of the form
a0
xn+a1xn-1+……….+an . called a
polynomial of degree
n ≥ in the variable “x”, if a≠ 0.
n ≥ in the variable “x”, if a≠ 0.
Eg: -6x+y=0
, x2+x+1=0 , 6x2+3x+2=0
A polynomial
of degree one is of the form ax+b=c a polynomial of degree two is of the form
ax2+bx+c=0 and so on.
Equality of
2 polynomials
Two
polynomial f(x) and g(x) are said to equal if they are of same degree and the
co-efficient corresponding powers are of “x” are
equal.
Eg: f(x)=a0
xn+a1 xn-1+….+an
g(x)=b0ym+b0ym-1+….+bm
the value of
a polynomial if f(x) is equal to ax0+a1 x+…+an
is a polynomial of degree n then f(x)=a0α+α1xn-1+….+αn
is called the value of the polynomial f(x) at x= α .
· if
f(x)=2x-7x+8
f(0)=8
Zeros of
polynomial or a roots of a polynomial equation. Let f(x) be a polynomial of
degree m . If f(x)=0 for a real number α, then α is called a zero of the
polynomial f(x) or root of a polynomial f(x).
Eg: f(x)=x2-5x+6
f(2)=(2)2-5(2)+6=4-10+6
f(3)=(3)2-5(3)+6=9-15+6
· · therefore , roots are 2 and 3.
Euclid’s
algorithm or Division Algorithm
If f(x) and
g(x) are any 2 polynomial in x. Then there exist two polynomial q(x) and r(x)
such that f(x)=q(x)g(x)+r(x) where either r(x)=0
or degree
r(x) will be less than degree of g(x).
Eg: f(x)=x5-3x4+x3-3
g(x)=x2+x-1
f(x)=3x2-2x+1
r(x)=x5+x-2
Mysore city- India, 2014
Comments
Post a Comment