How to find reminder and quotient of equation

Reminder Theorem

Statement: if f(x) is a polynomial of degree m in x, then the reminder in the division of f(x) by x-α is equal to f(x).

Proof: By Euclid’s or division algorithm we can find, the polynomial q(x) and r(x) such that f(x)=(x-α)q+r(x). Where either r(x)=0 or the degree of r(x) is less than g(x)(x-α).
Therefore r(x)=0 or the degree of r(x) is less than “1” or will be equal to “0” . In the second case r(x)=k(constant)
i) f(x)=(x-α)q(x)+k
  put x=α 
 (x)=(α-α)q(x)+k
 f(α)=k ;

Factor theorem

If “α”  is   the root f(x)=0 then x-α is  factor of f(x)
Proof:  f(x)=(x-α)q(x)+k --> (1)
Put x=α  , f(α)=k
Put f(α)=0 ,   “α” is a root of the equation f(x)=0 => k=0 ;
Substituting => f(x)=(x-α)q(x)
v  x-α is a factor of f(x) ;


Fundamental theorem of Algebra

Every polynomial equation of degree n≥ 1 has at least one or real or imaginary.
Synthetic  division for finding quotient and remainder for dividing a polynomial .
f(x)=a0Xn+a2xn-1   by x-h we apply a method called synthetic division.

Problems: 

1)  Find the quotient and reminder x4-5x3+6x2+7x-9   by x-1 
To solve 
 


     1   1      -5    6    7   -9                           
             0      1    -4    2    9
          1     -4    2    9     0
 
v   q(x)=1x3-4x2+2x+9
           r(x)=0 ;




2) Find the quotient and reminder in the division x5-3x3+4x-1 by x+2
To solve :

   -2   1     0     -3    0    4    -1
          0    -2     4    -2   4    -16
          1    -2     1    -2    8   -17
       
v q(x)=x4-2x3+x2-2x+8
r(x)= -17

3)  equation x4-3x3-6x2+28x-24 by x-2
 To solve :

   2    1     -3     -6     28     -24
          0     2      -2    -16     24  
          1    -1      -8      12     0
       
v    q(x)=x3-x2-8x+12

    r(x) =0  

                                                            Mysore city- India 28/03/2014

Comments

Popular posts from this blog

Энэтхэг улсын 7 гайхамшиг #1 #2

Багын тоглоомууд